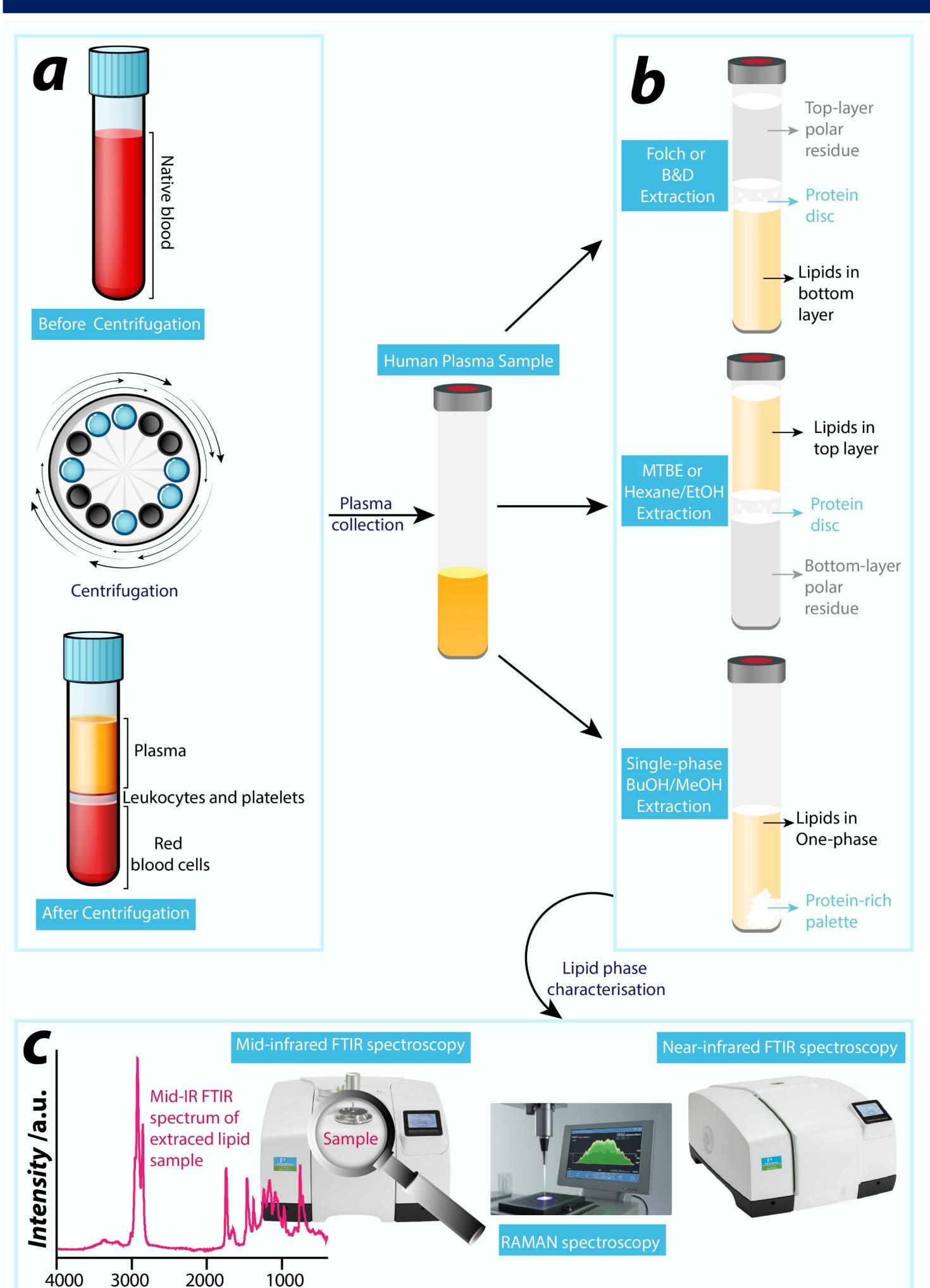
From Lipid Extraction to Analysis: The Clinical Potential of Vibrational Spectroscopy-Based Lipidomics of Human Plasma

Satnam Kaur^{1,2,3}, Shekhar Kumta^{1,2,3}

RMIT University, Melbourne, Victoria Australia, ²Melbourne University, Melbourne, Victoria Australia, ³ Northern Health, Melbourne, Victoria Australia Northern Health


BACKGROUND

Lipid profiling plays a vital role in assessing cardiovascular and metabolic disorders, where changes in lipid structure and composition can serve as important disease biomarkers.^{1,2} Although mass spectrometry is the current gold standard, it requires expensive instrumentation, lengthy sample preparation, and skilled operation.^{3,4} This study investigates a rapid, label-free alternative using vibrational spectroscopy (FTIR, Raman, and NIR)^{1,5-6} to detect clinically relevant lipid structural features, including unsaturation, esterification, and trans-fat content, directly from plasma.

Goal

Develop and validate a new diagnostic workflow that uses FTIR and Raman spectroscopy for rapid lipid analysis, improving throughput and accuracy in clinical lipid profiling.

METHODOLOGY

Figure 1. Conceptual overview of the vibrational spectroscopy-based lipid profiling workflow: (a) Plasma isolation from whole blood, (b) Lipid extraction using representative solvent systems, and (c) Spectroscopic analysis of extracted lipids using FTIR, Raman, and NIR techniques. A representative ATR-FTIR spectrum is shown, with key lipid-specific peaks highlighted and the sample dropcast area magnified to illustrate the measurement setup.

Human plasma lipids were extracted using three established protocols: Folch, Bligh & Dyer, and Hexane:Ethanol:Water. ^{7,8} Spectra were recorded using ATR-FTIR (4000-400 cm⁻¹) and Raman (500–1800 cm⁻¹). Key lipid features were quantified using integrated peak area ratios, for example, A_{3004}/A_{2855} for unsaturation, A_{1740}/A_{2855} for ester carbonyls, and A_{967}/A_{2855} for trans-isomer content to assess extraction performance and compositional differences

References

Moggio M, Errico S, Diano N, Lepore M. Eng. Proc. 2021, 10.
 Wu J et al. JACC 2024, 84(5), 434–446.
 Gau T-P et al. PLoS One 2025, 20(1), e0316522.
 Witting M et al. Metabolomics 2024, 20(1), 15.
 Zhou Y et al. J. Pharm. Anal. 2025, 15(4), 101136.

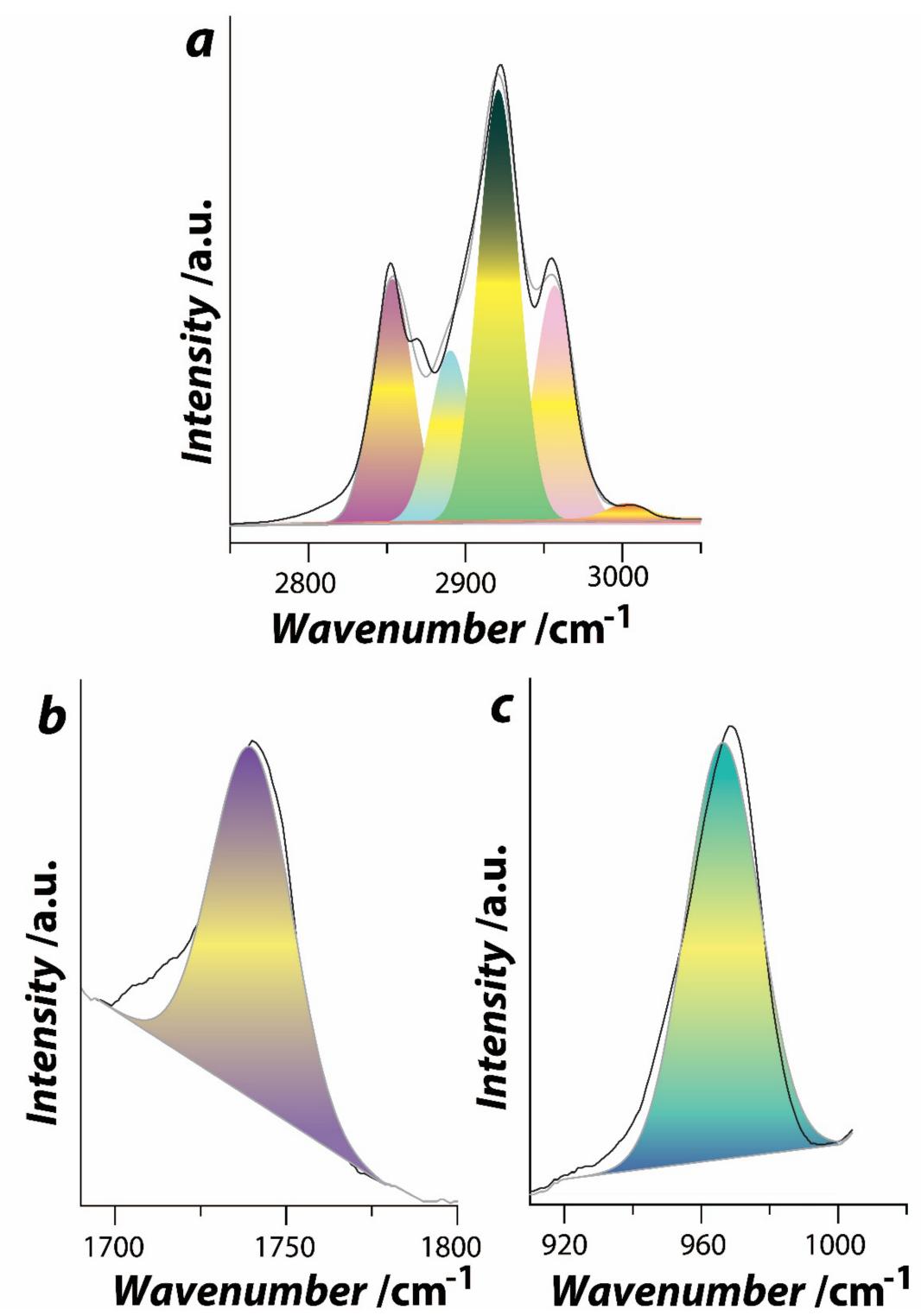
Wavenumber /cm⁻¹

- Zhou Y et al. *J. Pharm. Anal.* 2025, **15**(4), 101136.
 Beć KB, Grabska J, Huck CW. *Molecules* 2020, **25**(12), 2948.
 Saini RK, Prasad P, Shang X, Keum Y-S. *Int. J. Mol. Sci.* 2021, **22**,
- 13643. 8. Folch J, Lees M, Stanley G. *J. Biol. Chem.* 1957, **226**(1), 497–509.

Acknowledgements

- The authors acknowledge the generous support of NECTAR and NPV, and sincerely thank all colleagues and staff from both facilities for their assistance.
- We also thank the Ian Potter Foundation for supporting the Ian Potter NanoBioSensing Facility at RMIT University.

RESULTS


Quantitative analysis of integrated peak areas in FTIR spectra revealed distinct differences in lipid composition across extraction methods. The Hexane:Ethanol:Water method⁷ yielded the highest recovery of unsaturated and esterified lipids, reflected by an A_{3004}/A_{2855} ratio of 0.13 and A_{1740}/A_{2855} ratio of 0.52, suggesting efficient extraction of long-chain unsaturated fatty acids and triglyceride-rich lipids.

In contrast, the **Folch method**^{7,8} exhibited the strongest trans-fat signal $(A_{967}/A_{2855} = 0.17)$, indicating higher extraction of isomerized or oxidized lipids. The **Bligh & Dyer method**⁷ showed moderate values across all markers, reflecting a balanced recovery of both polar and non-polar lipid species.

These findings were further supported by **Raman spectroscopy**, which confirmed comparable spectral trends in the CH-stretching (2800–3100 cm⁻¹) and C=C stretching (~1650 cm⁻¹) regions. Raman spectra corroborated the higher unsaturation content in Hexane:Ethanol:Water extracts and the trans-isomer enrichment in Folch extracts, providing orthogonal validation of lipid structural differences

To enable accurate quantification, Gaussian peak fitting was applied to overlapping bands in FTIR spectra. Key vibrational regions deconvoluted include:

- 1) CH₂/CH₃ stretching (2800–3050 cm⁻¹): lipid chain order and saturation
- 2) Ester C=O stretching (1700–1800 cm⁻¹): esterified lipid content
- 3) C=C trans-deformation (~960 cm⁻¹): trans-fat isomer markers

Figure 2. Representative FTIR peak deconvolution of lipids extracted using the Folch method: (a) CH_2 and CH_3 stretching region (~2800–3050 cm⁻¹) used to assess lipid chain length and structural order, (b) Ester carbonyl (C=O) stretching region (~1700–1800 cm⁻¹) reflecting esterified lipid content, and (c) Trans C=C deformation band (~960 cm⁻¹) serving as a marker for trans-fat isomers. Gaussian peak fitting was applied to resolve overlapping vibrational bands and enable ratiometric analysis of lipid structural features.

CONCLUSION

- Vibrational spectroscopy (FTIR, and Raman) enables rapid, non-destructive profiling of plasma lipids and can detect clinically relevant structural features such as oxidation, esterification, and unsaturation.
- Among the tested methods, the **Folch extraction method** provided the most comprehensive **lipid profile**, including oxidized and isomerized species that are important in the context of **inflammation**, **atherosclerosis**, **and oxidative stress–related conditions**.
- This combined workflow of spectroscopy plus lipid extraction offers a **faster**, **cost-effective**, **and scalable alternative** to mass spectrometry. This technique can support **lipid monitoring in cardiovascular risk screening and metabolic disease management**, **enabling early disease detection and clinical decision-making**.