When not to test JAK2; real-world JAK2 mutation testing for the investigation of erythrocytosis

Holly Taylor^{1,3}, Hui Yin Lim^{1, 2, 4, 5, 6, 7}, Prahlad Ho^{1, 2, 4, 5, 6, 7}, Julie Wang^{1, 2, 4, 5}

1Northern Clinical Diagnostics & Thrombovascular Research (NECTAR), Northern Health, Melbourne, Australia; 2Northern Pathology Victoria, Melbourne, Australia; 3Intern, Austin Health, Melbourne, Australia: "Department of Haematology, Northern Health, Melbourne, Australia; "Department of Medicine - Northern Health, University of Melbourne, Victoria, Australia; "Australian Centre for Blood Diseases, Monash University, Victoria, Australia; 7School of Health and Biomedical Sciences, RMIT, Bundoora, Australia

INTRODUCTION

JAK2 testing is frequently ordered for investigation of erythrocytosis.

This study aimed to perform a retrospective audit of JAK2 mutation testing at Northern

- Identify ways to improve and rationalise the investigation of erythrocytosis
- Compare the effectiveness of Haemoglobin (Hb) and Haematocrit (Hct) reference ranges:
 - World Health Organisation (WHO
 - o Northern Pathology Victoria (NPV)

RESULTS

- of tests) with 5.4% of tests being MPN NGS
- 18 diagnoses of MPN, all of which were polycythaemia vera (6.3% of patients investigated for erythrocytosis)

CLASS 1

Females: less than upper limit of

Low JAK2 allele burder

Other secondary cause (including multiple of above)

• Most tests were for JAK2 V617F (87.2% | Figure 1: Local HB & HCT references ranges

FBE			>1	16 Y		65Y—150Y			
		Male		Female		Male		Female	
TEST	Unit	Low	High	Low	High	Low	High	Low	High
НВ	g/L	128	175	113	160	122	170	115	155
RCC	x10^12/L	4.0	5.9	3.6	5.3	4.0	5.7	3.8	5.4
MCV	fL	80	97	80	97	80	97	80	97
HCT	L/L	0.36	0.53	0.32	0.46	0.36	0.49	0.32	0.45
MCH	pg	27	34	27	34	26	34	25	34

CLASS 3

Females: greater than WHO criteria

3 (1.3%)

0.61

Table 2: Characteristics and final diagnoses of patients according to different Hb reference range thresholds expressed as number of patients (% of patients) or mean (standard deviation) for continuous values CLASS 2

Females:

reinaes, less flant upper finit of local reference range <160g/L for <65 <155g/L for 65+ Males: less than WHO criteria <165g/L for all males		160g 155-16 165-17	Males: 	> 160g/L for all females Males: greater than local reference ranges > 175g/L for <65 >170g/L for 65+		
		Class 1	Class 2		Class 3	p-value
Number of patients, n(%)		22 (7.7%)	45 (15.7%)		219 (76.6%)	
Females (%)		18 (81%)	5 (11%)		61 (28%)	
Age (years)		58 (18.5)	52 (14.2)		56 (14.7)	0.36
Hb (g/L)	1	53.5 (5.1)	165.6 (4.7)		184.9 (12.8)	<0.01
HCT (%)	0.	46 (0.024)	0.5 (0.022)		0.56 (0.046)	<0.01
White cell count (x10^9/L)		8.1 (2.4)	8 (2.6)		8.9 (4.6)	0.33
Platelets (x10^9/L) 24		41 (89.7)	244.6 (80.3)		239 (89.3)	0.82
Diagnosis (n, %)						
No cause found		6 (27%)	12 (27%)		25 (11.5%)	0.014
Hypoxia (eg: smoking, chronic lung disease, OSA)		11 (50%)	23 (51%)		125 (57%)	0.64
SGLT2i		1 (4.5%)	0 (0%)		6 (2.8%)	0.16
Testosterone		1 (4.5%)	0 (0%)		7 (3.2%)	0.46
Polycythaemia yera		0.(0%)	0 (0%)		18 (8 2%)	0.045

Table 4: Characteristics and final diagnoses of female patients according to different Hct reference range thresholds expressed as number of patients (% of patients) or mean (standard deviation) for

0 (0%)

10 (22%)

0 (0%)

3 (13%)

	Class 1: HCT <0.46 in <65yrs & <0.45 in 65+yrs	Class 2: HCT 0.46-0.48 in <65yrs & 0.45 - 0.48 in 65+yrs	Class 3: HCT >0.48	p-value
Number of patients (%)	6 (7%)	18 (22%)	60 (71%)	
Age (years)	68 (20.4)	55 (17.6)	60 (15)	0.22
Hb (g/L)	149.3 (7.1)	158.1 (4.5)	176 (12.7)	<0.01
HCT (L/L)	0.43 (0.014)	0.47 (0.08)	0.54 (0.047)	<0.01
White cell count (x10^9/L)	8.2 (3.2)	7.8 (2)	9.2 (3.2)	0.17
Platelets (x10^9/L)	206 (64.5)	286 (84.9)	266 (115.7)	0.29
Diagnosis (n, %)				
No cause found	2 (33.3%)	5 (28%)	8 (13%)	0.27
Hypoxia (eg: smoking, chronic lung disease, OSA)	3 (50%)	9 (50%)	31 (52%)	0.92
SGLT2i	0 (0%)	1 (5.5%)	1 (2%)	0.62
Testosterone	0 (0%)	1 (5.5%)	0 (0%)	0.18
Polycythaemia vera	0 (0%)	0 (0%)	8 (13%)	0.17
Low JAK2 allele burden	0 (0%)	0 (0%)	0 (0%)	-
Other secondary causes (including multiple)	1 (16.7%)	2 (11%)	12 (20%)	0.69

METHODS

- All episodes of JAK2 mutation testing were extracted from pathology electronic records from January 2019 to December 2023.
- Testing included JAK2 V617F, JAK2 exon 12 and MPN NGS.
- Collected information included:
 - Patient demographics
 - Indication for testing and final diagnosis
 - Other laboratory results:
 - basic haematology & biochemistry within 1 week
 - iron studies within 3 months
 - EPO & bone marrow biopsy closest to the JAK2 test

Table 1: Characteristics of patients investigated for erythrocytosis expressed as number of patients (% of patients) or mean (standard deviation) for continuous values

		Polycythaemia Vera	Secondary erythrocytosis or low JAK2 allele burden			
h						
5	Number of patients (%)	18 (6%)	268 (94%)			
1						
_	Female (%)	8 (44%)	76 (28%)			
5	Age (years)	67 (12.1)	55 (14.8)			
	Hb (g/L)	192 (22.1)	179 (14)			
٥.	HCT (L/L)	0.59 (0.08)	0.54 (0.05)			
1	WCC (x10^9/L)	9.9 (1.7)	8.7 (4.4)			
	Platelets (x10^9/L)	398 (132.3)	231 (74.4)			
-	EPO (U/L)	4.2 (4.5)	11.5 (9.9)			
	Table 3: Characteristics and final diagnoses of male nationts according to different Hot					

able 3: Characteristics and final diagnoses of male patients according to different Hct reference range thresholds expressed as number of patients (% of patients) or mean (standard deviation) for

		Class 1: HCT < 0.49	Class 2: HCT 0.49-0.53 <65yrs	Class 3: HCT >0.53 <65yrs or >0.49 in 65+yrs	p-value
_	Number of patients, n(%)	5 (2.5%)	58 (29%)	139 (68.5%)	
	Age (years)	55.4 (18.8)	47.7 (11.3)	56.6 (14.3)	<0.01
_	Hb (g/L)	156.6 (7.8)	175 (5.5)	189 (12.4)	<0.01
_	HCT (%)	0.46 (0.022)	0.52 (0.013)	0.58 (0.039)	<0.01
_	White cell count (x10^9/L)	7.5 (2.5)	8.4 (2.9)	8.8 (5.3)	0.72
-	Platelets (x10^9/L)	211 (27)	243 (68)	226 (81)	0.33
	Diagnosis (n, %)				
	No cause found	1 (20%)	14 (24%)	14 (10%)	0.03
	Hypoxia (eg: smoking, chronic lung disease, OSA)	2 (40%)	35 (60%)	82 (59%)	0.67
	SGLT2i	1 (20%)	1 (2%)	3 (2.2%)	0.04
	Testosterone	0 (0%)	0 (0%)	7 (5%)	0.19
	Polycythaemia vera	0 (0%)	0 (0%)	10 (7.2%)	0.09
	Low JAK2 allele burden	0 (0%)	0 (0%)	3 (2.2%)	0.50
	Other secondary causes (including multiple)	1 (20%)	8 (14%)	20 (14.4%)	0.84

DISCUSSION

- PV was an uncommon cause of erythrocytosis (~6.3%) and no diagnoses of PV were missed using either local reference ranges or WHO criteria
- o In men, the local reference range was higher for all age groups
- \circ In women, the WHO range was higher than local for 65+yrs, same for <65yrs
- For Hct:
- o In men, the local reference range was higher for <65yrs; same as WHO for 65+yrs
- o In women, the WHO range was higher for all age groups
- · Limitations included;
- a single centre study
- $\circ \ genetic \ testing \ landscape \ has \ changed \ dramatically \ since \ research \ period, \ changing \ from \ predominantly$ single gene testing to MPN NGS panels
- o retrospective analysis
- o documentation quality varied and some patients lost to follow-up

CONCLUSIONS

- Polycythaemia vera is an uncommon cause of erythrocytosis
- In women, the WHO criteria for Hct and Hb were the most efficient at detecting PV for all ages
- In men, the local reference ranges for Hct and Hb were the most efficient at detecting PV for all ages
- Increasing the Hb and Hct thresholds for JAK2 mutation testing may better rationalise the detection of PV.

