Plasmin generation assay in predicting arterial thrombotic outcome in patients with chronic kidney disease

Vincent Lu 1,2,3, Ilaria De Simone 4, Dana Huskens 4, Vicki Guppy 5, Bas de Laat 4, Prahlad Ho 1,2,3, Hui Yin Lim 1,2,3

- 1 Haematology Department, Northern Health, 185 Cooper Street, Epping 3076, Victoria, Australia
- 2 Northern Pathology Victoria, 185 Cooper Street, Epping 3076, Victoria, Australia
- 3 School of Health and Biomedical Sciences, RMIT, Bundoora, Victoria, Australia
- 4 Synapse Research Institute, 6217 KD Maastricht, The Netherlands
 - 5 Diagnostica Stago, 351 Burwood Hwy, Forest Hill VIC 3131, Victoria, Australia

RESEARCH WEEK 20-24 OCTOBER 2025 INSPIRED RESEARCHERS Northern Health

Northern Health

Background / Aims

Background

- Chronic kidney disease (CKD) is associated with a heightened risk of cardiovascular diseases, in part due to impaired fibrinolysis.
- Plasmin, a protease enzyme, helps dissolve blood clots by degrading fibrin.
- Defect in plasmin generation may lead to excess fibrin formation.

Aims

 To assess the dynamic process of plasmin generation in patients with chronic kidney disease, compared to healthy controls (HC).

Materials & Methods

Demographic

1

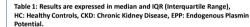
Sample Collection

 Sodium citrate specimens were double-spun at 2500g for 10 minutes to obtain platelet-poor plasma.

Laboratory Testing

- Plasmin generation (PG) was assessed using principles adapted from the calibrated automated thrombogram method for thrombin generation
- 2. Thrombin Generation (TG)
- 3. Overall Haemostatic Potential (OHP)

1


Statistical Analysis

- Differences between groups were assessed using the T-test or Mann–Whitney U test.
- Fine and Gray competing risk model (2 year follow up)

Healthy Controls Vs Chronic Kidney Disease

Table & Figure 1: Comparison of plasmin generation assay parameters between patients with chronic kidney disease (CKD) and healthy controls (HC)

	HC	CKD	P-value CKD vs HC
Lag time	2.33	2.67	<0.001
(min)	(2.33-2.67)	(2.67-2.83)	
Time to peak	4.67	5.00	<0.001
(min)	(4.33-5.00)	(4.67-5.22)	
EPP	263	274	0.24
(nM⋅min)	(203-313)	(223-318)	
Peak	44	44	0.72
(nM)	(39-52)	(40-50)	
Velocity Index	20.30	20.02	0.59
(nM/min)	(17.1-22.7)	(17.8-22.1)	

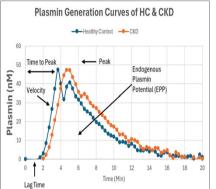
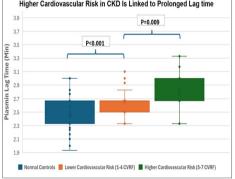


Figure 1: Plasmin generation curves comparing HC against CKD


Multivariate Competing Risk Regression Model

Variables	Sub hazard	95% CI	P-Value			
	Ratio					
OCP:EPP ratio > 0.145	7.43	2.64-20.91	<0.001			
ttPeak TG:PG > 1.50 min	3.60	1.54-8.42	0.003			
Plasmin Velocity Index > 20.30	5.28	2.25-12.38	<0.001			
nM⋅min						
D-Dimer > 820 ng/mL	4.97	1.54-16.02	0.007			
CRP > 9.95 mg/L	12.50	5.05-30.95	<0.001			
Framingham heart score of 3	8.02	3.34-19.26	<0.001			
Competing Risk Regression Model						
Harrell C statistic	0.91 (0.86 – 0.95)					

Table 2: Risk regression model to predict arterial thrombosis (N=30) in 24 months, competing against mortality (N=7)

Abbreviations: OCP:EPP Fibrin generation/Plasmin Generation Ratio, TG:PG Thrombin generation/Plasmin Generation Ratio, ttpeak: Time to Peak, CRP: C-Reactive Protein. The Youden index was applied to establish the cut-off threshold, P value < 0.05 is considered significant.

CKD with more cardiovascular risk factors exhibited delayed plasmin generation Higher Cardiovascular Risk in CKD is Linked to Prolonged Lag time Higher Cardiovascular Risk in CKD is Linked to Prolonged Time to Peak

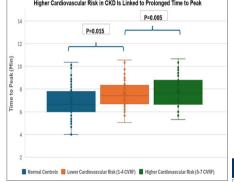


Figure 2A & 2B: Cardiovascular Risk Factors comprise of Hypertension, Obesity, Smoking, Over 65 Years old, Hypercholesteraemia, History of CVD, Family History. P<0.05 is considered as significant.

CKD Demographic		Number	
Total Observation		Total: 84 Patients	
I	Median Age (IQR)	67 years (58-77)	
	Male Patients	54 (64%)	
Arterial Thrombosis		Total: 30 patients	
	Myocardial Infarction	18	
	Stroke/Transient Ischaemic Attack	5	
	Critical Limb Ischaemia	7	

Summary/Conclusion

- Patients with CKD demonstrated delayed plasmin generation compared to healthy controls.
- CKD patients with delayed plasmin generation exhibited a higher number of concurrent cardiovascular risk factors.
- These findings suggest that altered plasmin generation may contribute to the impaired fibrinolysis in these patients.
- A multimodal risk assessment model incorporating GCAs, including plasmin generation, outperformed traditional models in predicting arterial thrombotic events at 24 months.